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The equilibrium condition of a solid spherical particle in a turbulent
flow is considered. A relation between the rotational velocity of the
inner cylinder and the critical velocity of the ascending flow in an

annular channel is obtained for the range of Reynolds numbers 100 -5+
4

- 10%

When the inner cylinder rotates, the motion of an
ascending flow in an annular channel is no longer
translational, but helical with the helix angle depending
on the rate of rotation of the inner cylinder. Figure 1
shows photographs of the structure of the turbulent
flow in such a channel.

In order to visualize the flow structure of pure wa-
fer we used a mixture of chlorobenzene, refined min-
eral oil, and white mineral pigment.

It is known [1-7} that at a mean axial flow velocity
vz = 0 rotation of the inner cylinder of an annular
channel with r,/r, = 0.4-0.95, where r{ and r, are the
radii of the inside and outside cylinders, respectively,
creates a tangential veloeity profile with a well-ex-
pressed flow core moving at the almost constant ve-
locity v and occupying up to 80% of the channel width,
In the turbulent regime v, is about 0.4 times the tan-
gential velocity at the surface of the inner cylinder v

When axial motion is superimposed on thig flow,
the tangential component v, of the mean resultant ve-
locity v, decreases with increase in the ratio va/v
and may reach a value of the order of 0.2vy {2, 3].
This is due to the interaction of the two flows and the
formation of a new flow with more intense turbulence,
In view of the nonlinearity of the equations describing
such processes, the flow interaction does not reduce
to the simple addition of intensities of turbulence. The
axial flow acts on the rotational motion of the liquid
and deforms the tangential velocity profile, making it
fuller, which leads to an increase in the frictional
force at the surface of the inner cylinder.

This reasoning is fully applicable only until Taylor
eddies are formed in the gap. Taylor eddies occur in
the annular gap at V¢1/Vz > 8-10 andrelative gapwidths
rl/r2 of the order of 0.4-0.8 [1].

As our experiments at v, /v, < 20 have shown, the
presence of Taylor eddies reduces Vg by a further
10~-15%.

In order to study the equilibrium conditions of
spherical particles in an annular channel with rotation
of the inner cylinder we performed experiments on an
apparatus consisting of two vertical, coaxial, hydrau-
lically smooth cylinders 1300 mm long, of which the
inner aluminum cylinder rotated while the outer trans-
parent plastic cylinder was fixed.

We investigated the case of a Newtonian liquid flow-
ing over spheres of diameter d = 4 mm made of plas-

tic (p; = 1.61 g/om®) and aluminum {p; = 2.6 g/em?).
The spheres were placed in the gap between the cylin-
ders before the experiments began.

Fig. 1. Structure of single-phase turbulent flow
in an apnular channel with rotating inner cylin-
der: a) helical turbulent flow, Re, = 6.7 + 107,
Reg = 10%; b) the same, Rez = 6 - 10%, Rey =
=10%; ¢) transition from helical flow to flow with
Taylor eddies, Re, = 1.4 + 10, Rey = 8 - 10%;
d) axially moving Taylor eddies, Rez = 3 - 107,
Re, = 10%

The Reynolds number of the gpiral flow varied in
the range 10°~10% The experiments were performed as
follows. The rate of rotation of the inner cylinder V(p‘
was fixed. By gradually increasing the flow of water
we created a steady lift force just sufficient to suspend
the selected particles in the flow. The critical velocity
was assumed to have been reached when the pariicies
occupied the space between two marks 0,05 m apart in
the middle of the experimental section, The position
of the particles in the channel was determined visually.

It should be noted that at v, = 0 the particles exe-
cuted a random oscillatory motion between the marks,
‘while af v, >0 they also moved in the horizontal plane
along a circle close to the walls of the outer cylinder
with a certain mean velocity vy, = 27 r/t, where r =
~r, — d/2 is the radius of curvature of the particle
trajectory, and t the time required for it to make one
revolution in the horizontal plane. The value of Vou
was determined experimentally.

The experimental data show that rotation of the in-
ner cylinder has animportant influence onthe lift force
exerted by the ascending flow. By increasing the rate
of rotation it is possible to suspend the particles at
a mean axial flow velocity vz much lower than the ve-
locity determined from the equation for the particle
ejuilibrium condition:

u, =} GyCypad®
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where Gy is the weight of the particle in a medium of
density p,, and Cy, is the drag coefficient in the turbu-
lent regime.

A solid particle in an annular channel is acted upon
by: the weight of the particle in the given medium G, =

dd
=% {p1—po) g (spheres); the centrifugal force di-

rected at any given moment in a direction normal
to the particle trajectory; a force due to the radial
pressure gradient in the gap; the inertia force Fy =
=duv,, /dt; the Coriolis force; and the drag due to
flow past the particles at the resultant velocity Ve
for a sphere P¢= c,p,d%? = kvl . Since the radial
pressure gradient gs small [7-9], thecentrifugalforce
v
Fy= —2— d3 (o, — 0,) —(ii usually prevails.

The direction of this force is nearly radial. Under
the influence of this complex three-dimensional system
of forces the motion of a particle in the turbulent flow
is random: it now approaches, now moves away from
the wall at certain moments, experiencing the decel-
erating action of the wall and the layers of liquid near
the wall. ‘

This type of interaction is observed in cyclones.

Isolating the most important factors determining
the entrainment of particles in the axial direction, we
will average the motion of the particles in time and
neglect radial displacements and the forces acting in
that direction, i.e., we will consider the forces and
velocities acting in a plane tangential to a cylindrical
surface of some radius r characterizing the mean po-
sition of the particle in the annular space. We also
neglect random fluctuations of the particle velocity,
i.e., we assumethatdv/dt = 0. We select a Cartesian
coordinate system with origin at the center of the
particle and consider its equilibrium conditions in
averaged motion along a helical line (Fig. 2a).

For p, >p, the force Gy is directed vertically down-
ward. Averaging the effect of the decelerating impulses
we can estimate them by means of a certain constant
force Py which in the general case has vertical and
tangential components. When G, and the lift force be-
come egual, the particle moves through the annular
space in the horizontal plane, and for this case the
vertical component of the decelerating forces may be
taken ejual to zero,

The velocity vector diagram for this case is shown
in Fig. 2b. The translational flow velocity is equal to
the velocity of the flow core in the annular space V¢ =
=V,+ V_.

Above it was shown that the absolute velocity of a
particle in the flow V(p can be determined by observ-
ing its motion in the snnular channel under ejuilibrium
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conditions. The particle velocity relative to the flow
V., is equal in magnitude and opposite in direcion to
the vector difference of V. and V, . The vertical com-
ponent V, of the velocity V for equilibrium condi-
tions is opposite to V,, and the tangential component
Vo™ Vo = Vg,

It is clear from the diagram that for any given val-
ue of V, it is possible, by increasing V, (and hence
Vso)’ to increase the lift force exerted by the flow in
the vertical direction. At a given tangential velocity
the lift force reaches its maximum value when the
particle is completely decelerated, i.e., when V,, =

= Vg;, and its minimum value when Vg = 0.

In [10] it was erroneously proposed to determine
the lift force for a flat plate in the annular gap of a
drilling with rotating drill pipes not from the relative
tangential velocity of the particle, but from the pe-
ripheral velocity of the surface of the drill pipes.
Moreover, the special characteristics of the motion of
a plate in a helical flow noted later in [11] were not
taken into account. :

Our experiments at vz/vy, =0.04-0.4gave vy =
= (0.35-0.4)vyp,, and Voa 0.5vy = 0.2v, .

Thus, vy, = O,ZV(P or in general form v 0= nv .
It may be assumed that the value of the coefficient n
depends on the shape of the particles, their size, the
ratio of their size to the width of the gap &, the par-
ticle concentration, and the conditions of interaction
of vy, and v,.

For the equilibrium state of the particle we write

(1

A hg i .
R.= G, = kvan sine = k(2 + v(“;ﬂ) sina.

On the other hand, equilibrium is also reached in
the absence of rotation of the liquid, by increasing the
axial velocity v,. At the critical velocity v, the s%me
particle is acted upon by the force :

R, =ku?. (2)

Equating (1) and (2), after transformations and al-
lowing for the fact that

U,

Sing == —m—"—x—
Vool+ g

we obtain

4
N e @
U, n v,
where v,, is the tangential velocity at the surface of
the inner cylinder at which particles characterized by
given values of v, and n will be in equilibrium at vg <
< Vo
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Fig. 2. Diagram of forces(a) and velocities (b) for a particle in
an ascending flow through an annular channel.
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Fig. 3. Equilibrium of particle in an annular
channel as a function of Vo /vgz: 1) calculated
"from Eq.(3) for n = 0.15; 2) the same, 0.17;
3) the same, 0.20; a,b) spheres 4 mm in
diam. with p; equal to 1.61 and 2.6 g/cm®,
respectively.

The graph (see Fig. 3) of V(pl/VZ versus vy/v, in-
dicates sufficiently close agreement between the ex-
perimental data and the calculated curves based on Eq.
(3) at various values of n.

The change of flow structures shown in Fig. 1 does
not have much effect on the nature of the relationship
between v, /vy and vx/vz .

The drag coefficient of spherical particles may be
assumed constant, which is valid on the interval
Re., = v, d'v = 10°—10°.

In (Zur 1nvest1gat1on Reg, varied between 10% and

- 10%,
In the general case the coefficient ¢y 18 variable

and depends on Reao. Then expression (3) is written as

St e o S R

z

The problem is one of considerable practical im-
portance in connection with the removal of rock debris
from bore holes and the operation of cyclone equip-
ment.
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